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Abstract Video style transfer is an important area of
research in computer vision with many potential appli-

cations in the fields of art, entertainment, and video pro-

duction. While previous methods for video style transfer

relied on constraints such as optical flow to maintain

temporal coherence, they lacked the desired level of gen-

eralizability. To address this limitation, we propose a

novel video style transfer approach based on an implicit

4D representation, which enables us to preserve the style,

temporal dynamics, and spatial information of the input

video. Unlike previous methods that extended 2D image

style transfer techniques to videos, our approach decou-

ples temporal and spatial consistency into a distinct 4D

reconstruction task, followed by the stylization of the

scene appearance. This extension builds upon the foun-

dation of 4D reconstruction techniques from computer
graphics and rendering. Importantly, Decoupling the

4D representation brings additional benefits, including

support for style transfer for a single training view video

and facilitating view synthesis to ensure consistent style

across different viewpoints, which we believe will bring

new possibilities for future video production tools. By

proposing a flexible framework instead of a model, we

can easily replace the 4D model to get better results,

which is conducive to subsequent work and updates.

Keywords Video style transfer · Neural radiance
field · Neural Rendering · Dynamic implicit 3D

representation · Neural Graphic Primitive

1 Introduction

Editing digital content has always been an intriguing

problem. When it comes to image editing, comprehensive

tools like PhotoShop provide users with the ability to

make almost any desired changes to an image. However,

video editing, on the other hand, is not as commonly

demanded, resulting in video editing tools being less

advanced compared to their image editing counterparts.

Consequently, video editing remains a challenging en-

deavor. There are two primary challenges associated

with video editing. Firstly, maintaining temporal consis-

tency across all frames is crucial, which is not a concern

in image editing. For instance, if an object moves within

a video, we must ensure that the edited object main-

tains consistent positioning across all frames, even when

occlusions occur. Secondly, the editing process should

be intuitive, a challenge that has already been addressed

in image editing. Manually editing each frame of a video

is a non-intuitive approach that demands extensive ex-

pertise and a significant amount of effort, representing

the traditional method employed by video editing tools.
Ideally, we should be able to automatically propagate

edited content throughout the entire video by simply

editing a single frame, akin to the simplicity of image

editing. The question then arises: How can we overcome

these aforementioned challenges?

The aforementioned challenges can be addressed

through both 2D and 3D approaches. In 2D approaches,

users modify keyframes, and these modifications are

propagated throughout the entire video using frame-to-

frame tracking or feature similarity [1]. Alternatively,
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Fig. 1 Our approach aims to perform style transfer on the visual appearance of a dynamic 3D NeRF scene by considering
spatial and temporal information, rather than directly transferring the rendered image without such awareness. In order to
achieve this, we utilize training videos (a) to reconstruct a dynamic NeRF representation (b) of the 4D scene. Subsequently, we
employ an optimization-based style transfer process to generate a newly transferred dynamic NeRF (d). Finally, we are able to
render novel style transferred results at novel views and times as shown in (e).

recent studies have tackled this issue through layer-

based methods [2], which have made significant progress

in ensuring consistency. On the other hand, 3D ap-

proaches typically rely on strong 3D priors or assume

static scenes [3, 4]. However, these methods only apply

to local parts of the scene. In 2D approaches, it is neces-

sary to distinguish between foreground and background,

while 3D representations require strong 3D priors or

are limited to static scenes. The task becomes more

challenging if the goal is global editing, such as style

transfer as presented in this paper.

To address this, we propose a novel video editing

pipeline based on a 4D implicit representation. Unlike

3D representations, our approach incorporates the time

variable into the model, enabling global editing of dy-

namic scenes. Similar to NeRF [5], we simplified Hy-

perNeRF [6] as our baseline, which employs MLPs to

model the time variable. It is important to note that

HyperNeRF can be substituted with any superior model

within our proposed pipeline to achieve enhanced edit-

ing effects. The advantage of our method lies in the 4D

representation’s ability to intuitively capture the entire

video scene, enabling comprehensive content alterations

through intuitive editing. Furthermore, we offer edited

videos generated from different viewpoints, providing

additional spatial consistency constraints. Our method

contributes in the following ways: 1) We introduce a

video editing pipeline based on a 4D representation,

effectively addressing the challenges of temporal con-

sistency and intuitive editing. 2) Our pipeline enables

global style editing, a capability lacking in previous

methods that focused on dynamic 3D representations

and scene editing. 3) Our pipeline incorporates addi-

tional spatial consistency constraints and facilitates the

synthesis of novel views and time images.

2 Related work

Video Style Transfer The application of deep learn-

ing in computer vision has led to a significant body

of research dedicated to video style transfer in recent

years. Early studies primarily focused on transferring

styles between images. The pioneering work of Gatys

et al. [7–9] introduced neural network-based methods

for image style transfer, which subsequently became

widely adopted. Building upon this foundation, John-

son et al. [10] proposed perceptual loss to enhance the

learning of high-level features and address real-time op-

timization challenges. The introduction of cycleGAN by
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Zhu et al. [11] garnered substantial attention, prompt-

ing researchers to explore its application in video data.

For instance, Wang et al. [12] pioneered video-to-video

synthesis by applying cycleGAN to video data, coining

it as video-video synthesis. However, despite its initial

promise, cycleGAN exhibited limitations, resulting in

noticeable temporal inconsistencies, such as flickering ef-

fects. Subsequent research efforts primarily aimed to mit-

igate this issue by incorporating additional constraints,

including optical flow [13,14], depth [15], and illumina-

tion [16]. Nonetheless, constraints such as optical flow
are significantly influenced by occlusion and varying

illumination conditions. To address this challenge, Wu

et al. [17] proposed a method that preserves tempo-

ral consistency using the structural similarity (SSIM)

loss. However, obtaining spatial information through

2D video representation remains challenging, as it in-

herently fails to account for occlusion and the resulting

incoherence.

NeRF In recent advancements, the neural radiance

field (NeRF) [5] has emerged as a highly successful tech-

nique for novel view synthesis, surpassing traditional

rendering methods in terms of effectiveness. NeRF en-

ables the creation of a 3D representation of a scene

using a sequence of scene images, which can then be

utilized to generate images from arbitrary viewpoints

through ray marching. Several studies [6, 18–22] have

extended the capabilities of NeRF to dynamic scenes,

yielding impressive outcomes. Noteworthy examples in-

clude NSFF [23], which incorporates flow supervision

to capture scene motion, DyNeRF [24], which employs

time-conditional neural radiance field to ensure tem-

poral consistency, and D-NeRF [25], Nerfies [19], and

HyperNeRF [6], which leverage canonical space and a
series of deformation fields to represent dynamic scenes.

While these investigations present intriguing findings,

there is currently a dearth of research exploring editing

and style transfer specifically tailored to dynamic scenes.

NeRF based editing In addition to the success of

NeRF in novel view synthesis, there have been en-

deavors to apply NeRF to scene editing. For instance,

NeuMesh [26] enables precise appearance editing within

NeRF scenes. Additionally, a set of inverse rendering

studies [27–29] explores physically-based relighting and

material editing by recovering object materials and

environmental illumination. In terms of style trans-

fer, a series of NeRF-based investigations [30–33] have

emerged, allowing for style modification within NeRF

scenes through adjustments in 2D pre-trained networks.

These works primarily employ optimization methods to

ensure similarity between the generated RGB image and

the target style image. However, it is important to note

that all the aforementioned editing and style transfer

studies are focused on static scenes, with no integration

of dynamic scenes.

3 Method

3.1 Overview

Our method takes a video and a style transfer target

image as input and outputs a stylized free-view video.

Specifically, we build a NeRF model that can repre-

sent dynamic scenes as our basic representation. The

neural radiance field models the scene implicitly as a

continuous and differentiable 5D function base on vol-

ume rendering, which is parameterized by a multi-layer

perception (MLP). It can be defined as: F (x ∈ R3,d ∈
S2) →

(
σ ∈ R+, c ∈ R3

)
where x ∈ R3 represents the

position (x, y, z), d ∈ S2 represents the direction (θ, ϕ),

σ represents the density, and c represents the color.

As for dynamic NeRF, which has a more complicated

structure, it has to encode the time as a conditional vari-

ance t to the model. It can also be viewed as extending

NeRF to a higher dimensional space. And our baseline

is to map all the coordinates x of the observation space

to the canonical space. Then we use the optimization

method to stylize the entire model, thereby obtaining

a stylized free-view video. In summary, our work is a

2-stage work. The first stage is to build a 4D model of a

dynamic scene, and the second stage is to perform style

transfer on this model. The overall pipeline is shown
in Figure 2 We will introduce how we build a dynamic

scene model in the next section 3.2, and how we perform
style transfer in the following section 3.3. And there is

also some other helpful designs shall be introduced in

other sections 3.3 As shown in the following formula,

where c′ represents the color after style transfer, and
style represents the style transfer image.

F :
(
x ∈ R3, t ∈ R,d ∈ S2

)
7→

(
σ ∈ R+, c ∈ R3

)
style7→

(
σ ∈ R+, c′ ∈ R3

)
.

(1)

3.2 Video to NeRF

Most dynamic NeRF [18, 20–22] based on multi-view

video input to build a dynamic scene model. However,

some works [6,19,34] have made normal but not fix-view

video input enough to build a dynamic scene model. In

our method, we choose to simplify the dynamic scene

model based on HyperNeRF [6]. Because compared with
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Fig. 2 In this pipeline we first assume we have already obtained the well-reconstruct dynamic NeRF since the reconstruction
from a video is not the main task of this paper.(1) First we encode the Time ti to deformation code ωi and use the dynamic
NeRF to render the corresponding Imagei . (2) At the same time, we add a Neural Graphic Primitive (NGP) to as the part
that to be optimized for style transfer, where the Multi-resolution Hash encoding only encode the position X (x,y,z) and pass
the feature to the MLP to get the bias color. (3) Then we add the bias to the rendered Imagei . (4) Finally, we calculate the
NNFM loss between Imagei and the target style image and optimize iteratively until we get the style transfer result we want.

other methods, although they all use a deformation field

to encode the time variable, the HyperNeRF structure

has the advantage that it does not separate static and dy-

namic scenes like other methods. This advantage ensures
we can better keep the consistency of the appearance

when we perform style transfer, and avoid some bound-

ary problems between static and dynamic scenes. But

for the video input, we will definitely make certain re-

strictions, such as the position of the camera must not
be fixed, otherwise the entire scene cannot be modeled

well. After all, there is no satisfying general method for

reconstructing a single-view fixed camera pose till the

moment we set the experiment.

Many previous methods [35–38] for processing video

information may focus on some constraints such as op-

tical flow and depth estimation. Then these methods

gain the information, like depth, from distilling spatial

information, rather than a very intuitive representation.

While optical flow gain from image matching containing

motion information, is also an important representation

strongly related to time information. Neither of them

is a very intuitive representation of the entire scene

information, but an approximation. We have to admit

that optical flow is practical and effective for local video

editing, but it is not really useful for global video editing,

like style transfer. So we thought of using a 4D scene

model to represent video information directly. In this

way, we can also perform style transfer on the appear-

ance of the entire scene, rather than style transfer on

the rendered images of each frame. Make it keep both

spatial and temporal consistency.

Our 4D scene model is based on the volume render-

ing method. It means we regard the scene as the volume

density and directional emitted radiance at any point in

space. We render the color if any ray passes through the

scene using the principle from classical volume render-

ing [39]. As the following volume rendering equation 2
shows, we can get the color of the ray by integrating

the radiance along the ray.

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt

where T (t) = exp (−
∫ t

tn

σ(r(t′))dt′).

(2)

The r represents a ray in the radiance field and C(r)

is the expected color of the ray. For the ray function

r(t) = o+ td with near and far bounds tn and tf , the

transmittance T (t) is the accumulated opacity along the

ray. The σ(r(t)) is the density of the scene at the point

r(t) and c(r(t),d) is the emitted radiance at the point

r(t) in the direction d. Although the origin volume ren-

dering equation is continuous, NeRF [5] discretizes the

equation and uses a multi-layer perceptron (MLP) to

approximate the density and the emitted radiance. By

using a stratified sampling strategy that partition[tn, tf ]

into N samples, the formula can be changed into dis-

cretized form as follows:

C(r) =

N∑
i=1

Ti(1− exp (−σiδi))ci

where Ti =

i−1∑
j=1

exp (−σjδj)

(3)
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where δi = ti+1 − ti is the distance between adjacent

samples and this will reduce the traditional alpha com-

position with αi = 1− exp (−σiδi)
It should be noted that NeRF does not directly re-

ceive input x, but passes x through a sinusoidal position
encoding for better learning at high-frequency features
according to Tancik et al. [40]. The position encoding
formula:

γ (x) =
[
sin(x), cos(x), ..., sin(2m−1x), cos(2m−1x)

]
(4)

where m is a hyper-parameter that controls the number

of sinusoids for encoding. The parameter m control the

smoothness of the learned representation by modifying

an interpolating kernel effective bandwidth.

As for the time variable, we implement embedding

to it, which is a common method in natural language

processing tasks. We encode time ti as the latent defor-

mation code ωi, and concatenate it with the input x

as input to dynamic NeRF. The detail of the canonical

space is originally represented by a deformation field
and ambient field. Both are MLPs while all the spe-

cific structures will be introduced in the implementation

details.

At the training stage, we must also specify the train-

ing loss we need. We choose L2 loss as our training

loss.

LL2 =
1

N

N∑
i=1

∥C(ri)−Cgt(ri)∥22 (5)

where C(ri) is the color of the ray ri and Cgt(ri) is

the ground truth color of the ray ri. And since all

the computing is based on discrete volume rendering 3,

which calculates a ray as a unit. It is not memory efficient

to calculate the loss with image size resolution like

other 2D vision tasks. But for the style transfer task,

to obtain some global features, we have to align the

loss calculation and feature extraction in image size

resolution. This challenge will be introduced more in

the following section.

3.3 Style transfer

Style transfer is a very classic computer vision task.

Since NeRF is a method that is highly related close

to 2D computer vision compared to classical computer

graphics, some work about style transfer has been done

as we introduced in related work. However, till our

experiment, we didn’t find any other work focused on

dynamic NeRF-style transfer. Thus our main work and

experiment are addressing this problem. According to

formula (1), we can know that NeRF, which base volume

rendering, will mainly output two parts: density σ and

color c. Our method is to perform style transfer on the

color part, which is consistent with the static scene.

Specifically, we choose a method similar to the op-

timization method of ARF [30], because this work has

proved the effectiveness of this method on static scenes.

However, the nice result of previous work is based on

TensoRF [41], which decouples the scene with an ap-

pearance plane that is very suitable for feature-related

back-propagation. But from the experiment. we find

that directly using the plane decouple method on dy-

namic NeRF will cause the scene to be distorted and

not work for our task.

Neural graphic primitives(NGP) So it is very in-

tuitive that we want to optimize the color MLP to
achieve style transfer. Although direct optimization of

color MLP works in changing the appearance, it is far

away from the results by static results. This may due

to the MLP may hard to learn the local feature of the

image without some specific encoder, which is very im-

portant for style transfer. The encoder in the static case

is TensorVM decouple and convolution patch in vision

tasks, but in the dynamic models, we don’t have such a

method yet. Thus we would like to find an encoder that

makes the model. We choose the Multiresolution hash

encoding method introduced in Instant neural graphics

primitives with a multiresolution hash Encoding [42]

As introduced in the paper [42], computer graphics

primitives are fundamentally represented by mathemat-

ical functions, which is a very natural way to represent
the world and its quality and performance are vital for

visual effects. To achieve good neural graphic primitives,

multiresolution hash encoding is proposed, which is in-

dependent of the task, adaptive and efficient. The key

point is that at the volume rendering equation, we as-

sume the scene has a discrete grid and voxel, which may

lead to a lack of local appearance and high-frequency

features. The core idea of multiresolution hash encoding

is to map a cascade of grids to corresponding fixed-size

arrays of feature vectors, while there are hash tables

for different fine resolutions. For the latent hash colli-

sion risk, the hash table can automatically prioritize the

most important features and collision will not happen

since the hash table only needs to store those points

that have the largest gradients. Unlike prior work, like

position encoding, no structure will be updated to the

data structure during training.

Table 1 Multiresolution Hash encoding parameters

Parameter Value Description

L 16 Number of levels
T 19 Hash table entries per level(log2)
F 2 Dimensionality of feature vectors

Nmin 64 Coarsest resolution
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Multiresolution hash encoding is effective but not

memory efficient. So there is a trade-off between the

memory and performance. Higher values of T result in

higher quality and lower performance. Normally bet-

ter performance always needs more memory. And since

the original work is also accelerated by CUDA imple-

mentation, we will not consider this trade-off in our

work.

Normally we use MLPs to represent the radiance

field, the fully connected neural network m(y;ϕ), and
the encoding function is position encoding y = enc(x).

We can see there are no trainable parameters in the en-

coding function, which is not suitable for our task. The

multiresolution hash encoding y = (x; θ) provides train-

able parameters θ for the encoding function. The mul-

tiresolution hash tables are arranged into L levels, each

con-training up to T feature vectors with dimensional F .

Above mentioned parameters and others’ default values

are shown in Table 2. For each level resolutions(the

different color cubes in the pipeline 2), the levels inde-

pendently store feature vectors at the vertices of a grid,

the resolutions are chosen between coarsest and finest

resolution [Nmin, Nmax], where Nmax is chosen to match

the finest detail in the training data and not be needed

to be specific in the tiny-cuda-nn [43] implementation:

Nl = ⌊Nmin · bl⌋, b = exp

(
log (Nmax/Nmin)

L− 1

)
(6)

In summary, we try to use the NGP to encode the

position of the scene, which is a grid or voxel in the

volume rendering equation. Meanwhile, the encoding has

better feature representation ability than the position

encoding, which is very important for style transfer. So

as we have shown in the pipeline, instead of adding NGP

in the training phase, we add it in the style transfer

phase. It is more flexible for other dynamic 3D scene

representations or normally called better generalization.

Optimization Objective The optimization objective

of our method is to minimize the following formula:

Ltotal = Lcontent + λLstyle (7)

where the total loss is combined with content loss and

style loss with a weight λ that balances the content

preservation and the stylization effect. This kind of loss

is proposed since the very beginning of style transfer

work [8,9]. And this structure will also lead to hard con-

vergence problems, like adversarial training. Due to the

style transfer can not be well quantified and evaluated,

we need to monitor the results while optimizing.
The style of 2D images is actually not a very explicit

feature in many cases, especially in some artworks. So
we choose to use the pre-trained VGG19 [44] network

to extract style features just like previous work. But we
don’t use the output of VGG19 directly, but the output
of some intermediate layers. Usually, the gram matrix is
used to compute the style loss in 2D style transfer tasks.
However, according to the work of ARF, we found that
the effect of using the gram matrix on dynamic scenes
is not as good as NNFM(Nearest Neighbor Feature
Matching) Loss.

Lnnfm(Fstyle,Frender) =
1

N

∑
i,j

min
i′,j′

D(Fstyle(i, j),Frender(i
′
, j

′
)) (8)

where Fstyle, render means the feature of style target

and rendered image extract by pre-trained models, i, j

means the pixel position at the rendered image,N comes

from the pixel number region to be transfer and D (α,β)

is the cosine distance between two vectors α and β.

D (α,β) = 1− α · β
∥α∥ ∥β∥

(9)

For each feature in Frender, we minimize the cosine

distance 9 between it and the nearest feature in Fstyle.

Deferred back-propagation All the above-mentioned
loss functions are computed in the image space, which

is not friendly to the radiance field when we considered

GPU memory and computation cost. So we use the strat-

egy called deferred back-propagation. It is a very simple

but effective strategy to reduce the memory cost. The

basic idea is to break the gradient auto back-propagation

into two stages–the image stage and the radiance field

stage. The key trade-off is that our GPU cannot store

all the rays belonging to one rendered image and their

corresponding gradients in memory at the same time.

And the NeRF-related method normally processes the

back-propagation in the ray unit instead of the image

unit. However, since NeRF is an algorithm that is highly

related to computer vision, we can not avoid the image

unit back-propagation. Thus deferred back-propagation

is a good trade-off to reduce the memory cost when we

face vision-related gradients processing. As we can see

in the 3, we need to disable the auto back-propagation

when rendering images. Then we compute the loss and

obtain the gradients of each pixel in the rendered im-

age. Finally, we can use the gradient of each pixel to

back-propagate to the radiance field patch-wise.

Match Color We found that a large amount of color

information can be achieved by zero-shot transforma-

tion of the RGB space through the reproduction of

ARF experiments. This pre-processing can significantly

improve the style transfer quality with nearly no extra

cost. We apply this method to the rendered image before

loss calculation and inference after style transfer. Color

transfer is a traditional task that has been addressed

since 2001 by Reinhard et al [45]. The characteristics of
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Dynamic NeRF

NGP color bias

Tensor.required_grad
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each patch rays

Fig. 3 This is the illustration of the deferred back-propagation. Please notice that the pink block means the computing in
these process is gradients free. The grey block means those tensor computed in these blocks has gradient function and need
back-propagation. The blue block means it already contains the descended gradients. The red lock for dynamic NeRF means
we do the gradients descended for it but without updating its parameters.

each channel in the color space are independent of each

other. According to the statistical analysis of the colored

image, a linear transformation is determined, so that the

target image and the original image are in l, α, β spaces

have the same mean and variance. Mathematically, the

color transfer can be expressed as:{
E [Ac] = E [s]

Cov [Ac] = Cov [s]
(10)

Where E,Cov means the mean and covariance of the

image, A is the transformation matrix, c is the color

of the original image, s is the color of the target image.

We just need to solve the linear transformation matrix

A to achieve the color transfer.

4 Experiment

4.1 Experiment Setup

We conduct our experiments on the datasets of Ner-

fies [19] and other datasets from HyperNeRF [6]. Since

there is no previous work that uses a similar framework

as we do, we compare our complete method with some

other approaches we have tried. For example, directly

optimizing the color MLP in the dynamic NeRF, it does

keep better consistency but is hugely restricted by the

training view, and the style transfer is highly constrained

by the geometry of the scene. Even though we have tried

to use TensoVM encoding, where implementation from

nerfstudio [46], the results are still not satisfactory, even

some details cannot learn like the static scenes.

Implementation details All experiments are con-

ducted on a single RTX3090. The environment is based

on CUDA 11.1 with its corresponding version pytorch

and other package related. Tiny-cuda-nn [43] is used to

quickly implement some encodings. The Multiresolution

hash encoding-related parameters are introduced in Ta-

ble 2. We use Adam optimizer with learning rate at

1e-3 and 1e-4 for the initial and the fine-tuning stage

respectively. And 1e-3 as the default learning rate when

we optimize NGP. The λ in the loss function is set to 1

as the default.

4.2 Results

All the results are with default parameters and later we

would like to discuss about the ablation study.

4.3 Ablation Study

Encoding methods As we mentioned in Section 4.1,

we have tried different encoding methods, including

directly optimizing the color MLP and the TensoVM en-

coding, but the results are not satisfactory. color MLP is

base position encoding. And for the TensoVM encoding,

the results show it does not work well. The comparison

is shown in the following figure.

NGP base resolution During our experiments, we

found that the base resolution of the NGP is important

for the final results. While the smaller base resolution

would likely gain smoother features and the larger base

resolution would likely gain more details with the storage
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(a) Inputs (b) View1 (c) View2 (d) View3

Fig. 4 Here are some style transfer result on novel views,
the (a) Input includes the training video and target style and
(b,c,d) are different novel view and time results we rendered
from the transferred dynamic NeRF

(a) NGP (b) color MLP (c) TensoVM

Fig. 5 Please notice we choose the results according to the
NNFM loss, those results are nearly has the best performance
in their own optimization process measured by NNFM loss.
So it may not with same view and time.

cost increase. We have tested the base resolution in 32,

64, and 128, and taken 64 as the default value. The

comparison is shown in the following figure.

Loss function The loss function is also important for

the final results. We have tried the gram loss function

and different layer features in the NNFM loss feature

extraction stages. The comparison of nnfm loss and

(a) Nmin=64 (b) Nmin=32 (c) Nmin=128

Fig. 6 As we can see, the Nmin=64 has the most style
like performance, and the Nmin=128 has better details and
Nmin=32 is more smooth. In practice we can use different
Nmin for different scenes.

gram loss will be shown in the following figure. The

layers feature extracted didn’t have as much difference

as the results in ARF [30].

(a) NNFM loss (b) gram loss (c) gram loss 2

Fig. 7 First gram loss is work in some case as we shown
above, but it is not generalizable enough for different style,
we can see the results(c) on another style is not competitive
as the former one

Color transfer From the results we did in the follow-

ing ablation study, color Transfer hugely reduces the

learning difficulty making the distance in the color space

much smaller. There is one more reason that color trans-

fer is vital in our pipeline we tried to define the style

as a color bias. The ability to represent style features is

highly related to the original color space.
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(a) w ColorTransfer (b) w/o ColorTransfer

Fig. 8 We can see without color transfer the color bias is
hard to be learned rightly.

5 Conclusion

Video style transfer has been extensively explored, yield-

ing effective solutions. However, approaching this task

from a graphics perspective rather than a vision intro-

duces intriguing possibilities. In this study, we propose a

novel method for video style transfer based on dynamic

neural radiance fields. Our approach aims to preserve

the global appearance of 3D scenes while retaining the

original geometry and its deformations, ensuring spa-

tial and temporal consistency in the generated video.

Moreover, our method can be readily tested on diverse

datasets, as it is a general approach applicable to var-

ious data distributions. Nevertheless, our method has

certain limitations. A key constraint is a strong em-

phasis on preserving voxel density corresponding to the

scene geometry. As a result, the color output of some dy-

namic scene NeRF methods may not precisely align with

our desired global appearance. Since appearance and

density are intertwined within implicit representations,

our method may not achieve the same level of effective-

ness in video style transfer as previous approaches. For

instance, in our experiments showcasing StarryNight,

while we successfully capture the color and global fea-

tures, we encounter challenges in accurately learning

the stroke texture due to inherent geometry limitations.

Consequently, the results may resemble graffiti on the

scene, rather than a faithful representation of the target

style. Nonetheless, our method represents a valuable

attempt, and we anticipate that advancements in im-

plicit dynamic representation techniques will address

this issue, much like the progress made in resolving

similar challenges faced by NeRF methods in explicit

static scenes through approaches like TensoRF [47]. Ad-

ditionally, local editing of dynamic scenes poses a highly

complex task that warrants further exploration, and we

look forward to future endeavors tackling this challenge.

6 List of abbreviation

Table 2 List of abbreviations

Abbreviations Definitions
MLP Multi-Layer Perception
NeRF Neural radiance field
3/4D three or four dimensions
NGP Neural Graphic Primitive
NNFM Nearest Neighbor Feature Matching
CUDA Compute Unified Device Architecture

HyperNeRF A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields
ARF Artistic radiance field
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Häusser, Caner Hazırbaş, and Vladlen Koltun. Flownet:
Learning optical flow with convolutional networks. In
CVPR, 2015.

38. Joon Son Chung and Andrew Zisserman. Lip reading using
spatiotemporal convolutional networks. arXiv preprint
arXiv:1611.05358, 2016.

39. James T Kajiya and Brian P Von Herzen. Ray tracing
volume densities. ACM SIGGRAPH computer graphics,
18(3):165–174, 1984.



Video style transfer via implicit 4D representation 11

40. Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi
Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier
features let networks learn high frequency functions in low
dimensional domains. Advances in Neural Information
Processing Systems, 33:7537–7547, 2020.

41. Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part XXXII,
pages 333–350. Springer, 2022.

42. Thomas Müller, Alex Evans, Christoph Schied, and
Alexander Keller. Instant neural graphics primitives with
a multiresolution hash encoding. ACM Transactions on
Graphics (ToG), 41(4):1–15, 2022.

43. Thomas Müller. tiny-cuda-nn, 4 2021.
44. Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

45. Erik Reinhard, Michael Adhikhmin, Bruce Gooch, and
Peter Shirley. Color transfer between images. IEEE
Computer graphics and applications, 21(5):34–41, 2001.

46. Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,
Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristof-
fersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David
McAllister, and Angjoo Kanazawa. Nerfstudio: A modular
framework for neural radiance field development. In ACM
SIGGRAPH 2023 Conference Proceedings, SIGGRAPH
’23, 2023.

47. Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In European
Conference on Computer Vision (ECCV), 2022.


	Introduction
	Related work
	Method
	Experiment
	Conclusion
	List of abbreviation
	Declaration

